Mechanics of Solids - Review

Dynamics of a continuous media

* In dynamics we study the cause of the motion of a continuum.

 We introduce the laws of motion and conservation of Mass Momentum and
Angular Momentum.

* These conservation principles lead to the equations of motion and
the definition of the stress tensors.

From the book: Mechanics of Continuous Media: an Introduction
J Botsis and M Deville, PPUR 2018.
Solutions: https://www.epflpress.org/produit/908/9782889152810/mechanics-of-continuous-media



https://www.epflpress.org/produit/908/9782889152810/mechanics-of-continuous-media

Continuum mechanics review: Dynamics

CONSERVATION LAWS

We consider a quantity ¢ (. ) occupying a volume
U_;(f_) or w ofabodyin motion with velocity v(x.7) .

To establish the conservation of a given quantity
in spatial description:

I(t) = / olx,t)dry drg drs

the variation of the time derivative of that
guantity is investigated:

DI(t) d

— = /LL ol(x,t)dry drs drs

=) The analysis of this derivative results in the following

integral known as Raynolds Transport Theorem:
DIt Do(x,t
% — [u (# + oz, 1)V - v(x, z‘)) diry diao dirs

It plays an essential role (together with the divergence
theorem) in the models of continuous media.
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CONSERVATION OF MASS

initial initial mass
IN MATERIAL DESCRIPTION nitial mass density
v . Motion of an arbitrary l l
2, L9 ?’TZ(Q) — / PD(X) dV — / PU(X) dX]_ dXQ ng
Q Q

part 11 7

current mass
current mass :
l density

me(w) = / plx,t)dv = / p(x,t) dry drs dxs

C Principle of conservation of mass : m,t(w) = WZ(Q)

| / (J(X.t)P(X.t) — Po(X))dV =0 ‘ /
Q

or:.J(X.1)P(X.t) = Fy(X) )

o(, 1) dv = fﬂ Py(X) dV

We change variables on the LHS integral and considering:

the medium is defined as

incompressible when : J(X-. t) =1 P(X. t) = P‘(X(Xs t). f))
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CONSERVATION OF MASS
IN SPATIAL DESCRIPTION

X, o Motion of an arbitrary

part 11 ‘%

Xg, 5[-'3

The material form of the conservation
is used in solid mechanics while the
spatial decription in fluid mechanics.

Q

The time derivative of: /

W

P(ﬁ’st)dl’:/Po(X)dV
Q

and use of the Reynolds theorem results in :

d
E/Mp(:;cl‘) dv =0

or /u; (w + p(x, t) divo(x, f.)) dv =10

defined as the global form of the mass conservation
in spatial description.

In local form the principle of conservation of mass is :

Dp(x,t) :
—— +p(xz, t)divo(z, ) =0
Y pla.t)divoe(z.t)
. . . : Jv;
For an incompressible material : divwv = 5 = (
adur;

and Dp(x.t)/Dt =0
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BoDY FORCES

Xg, 5[-'3

X, o Motion of an arbitrary

part 11 ‘%

Changing variables and using:

P(X.t) = p(x(X,1),1))

We obtain for the volume force density:

B(X.t) =b(x(X.t).t)

The time volume force acting on Il attimet:
fb(_"f’-".- t) = / pla,t)b(x.t)dv
oW

Here b(x.t)is a vector function defined in/R and
called spatial volume force density.

Thre material form of this force is:

FP(Q,t) = / Po(X)B(X,t)dV
J

In both decritions they express the same quantity
thus, we have:

fl(w.t) = F(Q.1)

or
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CONTACT (SURFACE) FORCES

XQ. T,

Contact force and

contact stress
vectors
€;
NX..a

Cauchy’s Postulate:
t(z,t(T) = t(z.t(n)
The action of 1 on IT is:

fT. t) = /t(aj.t.n)ds
[

k=

Contact forces can describe
1: the interaction between two interior parts of a body B
separated by a surface (i.e., internal cohesive forces).

2: the action of external bodies directly in contact with the
boundary of B3

We consider the body in two parts [ ; [T with volumes:
W~ CR andw™ CR
The two parts are separated by a boundary .

At a time t, the action of [TT on TI—, accros ds(x)
is §f°(x.t.T)

) ((x..T) = lim 27 20D

ds—0 55(113)

The limit, when it exists, is called spatial stress vector, or
surface stress vector:
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CONSERVATION OF MOMENTUM

In physics, the momentum of a particle with H To study its conservation, we need the material derivative
mass m is defined by: expressed as follows:
m — mv M = Mmu; L i
Dmy(w.t) d e dy — D(pv;) v P
For a part I of a body B initially at /R and Dt T dt . pri e = . Dt T pUi Ol *
currently at Rt , the momentum is: Dp v,
m(w.t) = / plx. t)v(x.t)dv - /w, ( Vi T p +pl?’drm) v
o W
Duv; OV )]
__ + vl =— +p dv
mi(w,t) = / pla,t)v;(x, t)dv /w, (p 1 Dt .
w
o /L; pai dv Local form of the mass
conservation equal to 0
. |
Dm(w,f) — / p(m__f)DU(m’ t) dv in vector form
Dt . Dt |
= / plx,t)a(x,t)dv
w
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CONSERVATION OF ANGULAR MOMENTUM

In physics, the angular momentum of a
particle with mass m is defined by:

o

—
m — mx X v Mg = MEjjkL; Uk

For a part L1 of a body B initially at /R and
currently at Rt , the momentum is:

m(w.t) = / ple.t)x x v(x. t)dv
w

my(w,t) = / pla,t)eijprijvg(x,t) dv
o W

Dm(w,t) Dv(m t)

Dy /M plx.t)x Dy dv

/pmfmxa,(mt)d

To study its conservation, we need the material derivative

H expressed as follows:

Dmg(w,t)

Dt
d
— dt/pvzjki vg dv
D(pejiraxsiv Ovm
f( (pe _}Fﬁ:i Ek)ergju oy Jom ! )da'
W iy,
Di Dy, v
Dy, Dp OV,
B /w ( peigkts 5 QeI ik (Dt TP e—um])) dv
:/ PEijkljag duv

Product of symmetric and
antisymmetric tensors equals 0

Local form of the mass
Conservation is to equal O

. invector form
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EULER’S LAWS OF MOTION

PRINCIPLE OF CONSERVATION OF MOMENTUM

The rate of change of the momentum of an arbitrary
part 11 of a body B at time t is equal to the sum

of the forces applied to 11 at that instant.

d
E/@ p(:c,t)v(a:,f)d-z::/w

With the conservation of momentum:

pla.t)b(x.t) d.-a.-'+/ t(x,t.n)ds.

Ow

> %/P(m-f)v(iﬁf)di’ / ple,t)a(x, t) dv

|

1/;,’

p(x,t)a(z,t)dv = /

W

plx. t)b(x. 1) d..£;_|_/

J Ow

t(x.t,n)ds

It will lead to the equation

"l of motion.
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EULER’S LAWS OF MOTION

PRINCIPLE OF CONSERVATION OF ANGULAR MOMENTUM

The rate of change of the angular momentum of an arbitrary
part 11 of a body BB at time t is equal to the moment (with respect to the
origin) of the forces applied to 11 at that instant.

d

— | plx.t)x x v(x,t)dv
dt ), |

— / plx.t)x x b(x,t)dv +/ x x tlx,t,n)ds

ow

With the conservation of angular momentum:

I

d

/ plx, t)x X v(x,t)dv

/ plx. t)x x a(x,t)dv

|
—> /
ple. t)x x a(x,t)dv

x X t(x,t,n)ds

It will lead to the symmetry of

"l the stress tensor.
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Cauchy tertahedron

O

Xy, 3

Cauchy’s Theorem

If the stress vector t(a.t,m)is continuous with respect
toxandif p(x,t)b(x.t) and p(x,t)a(xz.t)are
bounded, the principle of conservation of momentum

Ab implies that there exists a 2" order stress tensor J(m_ f):
Na t.(x,t,n)=0,(x,0)n,
! We apply the principle of conservation of momentum to
~ € the tertahedron shown on the left to obtain the stess vector
t(x.t, es) on the ABC side in terms of the stress vectors on

X,. 7, the three sides of the tertahedron as follows:

t(x.t,n)=(n-e)t(x,t,e;)+ (n-ex)t(x,t,ex) + (n-e3)t(x, t,e3)

[
(a®@b)v=(b-v)a=a(b-v)

t(x,t,n) = (t(x.t.e1) ® ey +t(w,t,e2) @ 82! t(x.t,e3) @ es)n

olx,t)=t(x.t.e;)Re; +t(x,t,ex) ey +t(x, t,e3) R es
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Xy, 722 | Consequences of the Cauchy’s Theorem
- - The theorem expresses the linear dependence of tl.(x, t,n)
I21 with respect to the unit normal:
Stress components - .T
of the Cauchy stress ‘ A t(x,t,n)= o (x, t)nj
tensor —— 3 o i
— 733 13

Xg. g

€

1: when the stress tensor o (. t) is known, the

stress vector acting at x on any surface with outgoing unit

normal 1 is completely determined.

O - — 2: the state of stress at x (at time ¢) is characterized by
B the stress tensor o (x, 1).

N | A

3

The components 74 of the matrix of & with respect to the basis {_81. €s. 83} are
given by:

Ojj — € -O€; = €4 tej — 44 is the component of the stress vector tej in the
l l direction i acting on a spatial surface element
direction  surface whose unit normal is aligned in the direction of €.
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PRINCIPLE OF CONSERVATION OF MOMENTUM

Theorem

Suppose that the stress tensor o (, t)is continuously differentiable with

respect to x, and that p(x,?)b(x,t) and p(x,t)a(x, t)are continuous
atx. The principle of conservation of momentum:

[p(m.t‘.)a(a:.t‘.)d-v:/p[a:.t)b(a:.f)d-v+/U; t(x,t,n)ds

w

is satisfied if and only if, for an arbitrary point x of R ;.

dive,(x,t)+ p(x,0)b(x,1) = p(x,t)a(x,t)| or |0, .+ pb, = pa,
[ ]
t,(x,t,n)=0,(x,t)n,

v

[P(iﬂ.f)a-g‘(iﬁ,f)d-u:/,O(II?,f)bi(:If.f) d_-—{:—|—/0; oii (@, t)n; ds

w

M(P(ﬂf- tag(x.t) — p(, t)b;(x.t) — 0y 5(x. 1)) dv =0
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PRINCIPLE OF CONSERVATION OF ANGULAR MOMENTUM

Theorem

Suppose that the stress tensor o (, t)is continuously differentiable with
respect to x, and that p(x,t)b(x.t) and p(x, t)a(x,t)are continuous
atx. The principle of conservation of angular momentum:

/ ple. t)x x a(x, t)dv

= / plx,t)x x b(x,t)dv + / x x t(x,t,n)ds
w Ow

implies the symmetr\iof the stress tensor,i.e. |0 =0 , O. = O.

t.(x,t,n)=0,(x,t)n,

A 4
/,‘)(ﬂ?,f’-)-«fijkifjak(iﬂ.t)d'l-‘
w

:/p(m.f);?ijk;{fjbk(m.t) d-v——/ EijkliOkm (X, t)nm ds
W J Ow
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PRINCIPLE OF CONSERVATION OF ANGULAR MOMENTUM

Apply the divergence theorem to the last term of equation: Ojk — Okj
/ ,(J(CB, IL)EES,}{-LLJ a‘k(ma f) d"{! ] t "
“ CijkOkj = 5Cijk(Okj+0jk) = 5Eik(05k—0k;)
2 2
= / plx,t)eijkribe(x,t) dv —I—/ CijkL O km (X, )1, ds 1
W Ow = —— E’ijk(gjk_gkj) =0

/ 2
/ Siik L0 km (T, )1y, ds I
dw

/ EijkOkj (EB..LL) dv =10

— / ik (£ 5,mOlem (L. 1) 4+ 2O m (2, 1)) dv
w

zero (equations of motion) f

= / Cijk (D’kj (SE, f) + ;i.-'jﬂ'kmjm(ﬂ}, f)) dv . ( A \
“" — / sijpi(p(a, t)ap (@, t) — p(x, t)bp (@, t) — Ohmm(x, 1)) dv

—/Ez’jkakj(ﬂ:-.t) duv .
w
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Properties of the Stress Tensor

The stress vector is given by the Cauchy’s formula:

t — T or ILE, — Jl_}'”_}'

When the stress vector acts along in the direction on the
vector normal to the surface:

on = \n or

!

det(o' — /\I) =0 or det(crij — /\613) =0

!

AN =T (o)A + Iy(o)\ —15(0) =0

Oijnj = An;

This is the characteristic equation of an eigenvalue
problem.

\ 4

Here the stress invariants are given by:

Il(G') = ro—= T i

1

la(o) = B ((‘Ercl'):2 — tl‘crg) — 1

2
5 ((Uz’i) - Jmna'nm)
13(0') = deto = £ijk0i10j20L3
The three roots are real (stress tensor is symmetric) and
are called principal stresses :

J1. 02 and 03
conventionally ordered as: 07 > 09 > O3

The corresponding principal eigenvectors are the
associated principal directions (or planes) 725 .

In terms of the principal stresses the invariants are:

11(0') = 01 + 09 + 03
IQ(O’) = 0109 + 0903 + 03071

13(0') — 0109203 .
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] Normal and tangential
Properties of the Stress Tensor stresses on oblique plane, in two

dimensional load
The stress vector is given by the Cauchy’s formula:

A

t=on or EL,E; — 04571

The stress vector has a normal 7y and a tangential ¢
component associated with shear stress: «

tNn=n-t=mn-on or tny =n;t; = o;;n;n;
tr=lt—(n-tin| = [T —non) |=—— .
= (t:it; — t3)"/? —e,

When the stress vector acts along the direction of the
vector normal to the surface:

v

on = AN or o;in; = \n;
J°0]

) \3 — 1, (0)\2 + (o)A = I3(0) =0
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Stress Vector at a plane n

The stress vector is given by the Cauchy’s formula:
t—=on or 1; = OjjTl

The stress vector has a normal 7y and a tangential
component associated with shear stress:

IiNn=m-t=mn-onorty = n;t; = o;in;n;
tr = ||t — (n- t)nH = [|(I —n®n)t|
= (tit; — t3)"/?

Stress vector t at n, an
oblique plane, in two
dimensional load

v

Oy

The expression:
It.i — G-ijn'j

is used to calculate the stress vector ¢ at any given
plane with normal n passing by a point x

Octahedral plane: It is a special plane: Its unit
normal vector has equal components with respect to all
three principal directions

m = (1/vV3)n1 + (1/v3)na + (1/v3)ns




Continuum mechanics review: Dynamics

Transformation of the stress tensor

The components 0 of the stress tensor O form a
3x3 matrix given by (relative to{ei.e2.e3}):

Jij :ei-crej

Consider another orthogonal basis {€e], €5, e5} obtained by
rotation of {€1.€2,€e3}:
8; = Ci5€ (E = 1,2, 3)

Y. /
‘Jij_ei-o'e,}-

= CimCin€m " 0T€n = CimCinOmn

In matrix form the transformation is: [0'] = [C][a][C]T

The elements of [C] are the direction cosines of the
{e],e5, e} with respect to {€1.e2.e3} and

[ClleT =[e]eT =[1]

Deviatoric stress tensor

It is often useful to decompose @ in two
components as follows:

o—=s8+opl or Jij = Sij T O—[}fj?:j

where 8 = 0 — ool

1 1
ﬁﬂigfl(a') — 3 Tkk

Tensor s is called deviatoric stress tensor
associated with ¢ and the property:

trs = s;; = 0




Stress Analysis: Principal stresses

EXAMPLE 1.8
Find the principal values (eigenvalues) and the corresponding unit vectors
(eigenvectors) of the symmetric tensor with matrix

2 1 -2
L= 1 4 -3 |. (1.122)
2 3 -2

Using the expressions below, we determine the invariants,

characteristic equation and its roots: ‘ Il(L) = 4, 12(11) = —18, Jf-r:3=(L) = —36,
(L) =Ly =trL ..v

| L1 Lio Las  Log Li1 Las 3 2 - op
I2(L) ' Loy Lo ' L3> L3z ' L3y L3z A" —4A" = 18A +36 = 0.

- (LiiLjj = LijLji) ‘
A =6, A=1.65, A3=—3.65.

For the principal directions see
the rest of the example in the book (Botsis & Deville)

((tr L)> —tr(LL)) = = ((tr L)® — tr (L?))

b | — b
b | —

Ig(L) = E@;jkLﬂngLkB = det L.



Stress Analysis: Stress vector on a plane

We consider the tensor of stresses,

2 L =%
o] = 1 4 -3
— =3 =

To calculate the stress vector at a point

belonging to the plane with outward
normal given by:

n = 281/3—|—2€2/3—€3/3:

y

we use the Cauchy expression

IL.E'_ — 034715

) 4

t1 2 1 2 2/3 [ 8
b = 1 4 -3 2/3 | == 13
te —2 -3 —2)(—1/3) 3(—8

We can also calculate the normal

and tangential components on the plane
using the expressions '

tN — nit?; = 9.9
tr = (tit: — t2)"% = 4.56

|




Stress Analysis: Octahedral plane

We take next the stress tensor
with its principal values

6 0 0
0 1.65 0
0O 0 —=3.65

and consider a coordinate system
defined by the principal directions and
the following plane with normal:

m = (1/V3)n1 + (1/V3)n2 + (1/V3)ns.

The plane so defined is called
OCTAHEDRAL PLANE

Y2 _ 0.94.

tr = (titi —tn)
tn =n;t; = 1.33

On that plane the normal and tangential
components are

We calculate the stress vector
on that plane using

f‘i — gij“‘j

=

6 0 0 1/v/3 ]
0 1.65 0 1/V3 | = —
(0 0 3.65)(1?\/3) \/g(

6
1.65

—3.65

|



Stress Analysis: Octahedral stresses

On the octahedral plane we have two stress components (octahedral stresses):

tN — Il((}')/S <—— QOctahedral normal
1
tT — g\/leg(o-) _ 6]2(0-)4.— Octahedral shear
1 1/2 2
tT — § [(0'1 — 0'2)2 -+ (O'Q — 0'3)2 + (0'3 — 0'1)2} / — \/512(8)

Note that the latter expression is proportional to the von Mises stress:

Oo = F ((01 — 02)* + (02 — 03)° + (03 — 01)2)} . — \/112(3)
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Equilibrium equations for a continuous medium

We set the acceleration zero in the equations
of motion:

divo,(x,t)+ p(x,0)b(x,t) = p(x,t)a(x,t?)

to obtain the equilibrium egs:

do doq- do
‘_ 11 12 | ‘_ 13 + by =0
dux 1 o 2 or 3
do Joo: Jo
‘_ 21 22 | ‘_ 23 + by =0
diay o drsg
{{:)0'31 6)(732 (1’;30'33
_ - + — by = 0
Oy 0o Oz Trbs
Do
or by =0
O

(P is the mass density and bi the volume force density)

Uniform tension or compression

Tension is applied in direction 1. O is given by:

o 0 0
o=0on; RN or [r}'] — 0 0 0
0O 0 0

( 0 is a constant)

This state of stress is encountered in a prismatic bar
parallel to the direction 1.

More general uniform tensiom or compression in a direction

m is expressed as:
o=c(m®@m) or O = OMy;M,;

(o is a constant).
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Uniform shear

A uniform shear is applied in direction 1 on the planes
perpendicular to €. The stress tensor becomes:

og=r71(e;1 @es+es®e1) where 7 >0
or

0 7 0
o] = T 0 0
0 0 0

The characteristic equation becomes:

AN —=7%) =0
With solutions as the principal stresses:

o, =T, 09 = 0,03 = —7T

And corresponding principal directions:

ny = (e; +e)/vV/2  n2 = e3
ns = (e; — 82)/\@

Uniform tension or compression

Tension is applied in direction 1. O is given by:

o 0 0
o=on;@n or o] = 0O 0 0
(0 is a constant) 0O 0 0

This state of stress is encountered in a prismatic bar
parallel to the direction 1.

— > O

O «— —_ n,
-— —-——> >
— —

P
o

More general uniform tension or compression in a direction
m is expressed as:

oc=c(m®m) or O = TM;Mm;
(0 is a constant)
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Uniform shear

A uniform shear is applied in direction 1 on the planes
perpendicular to €. The stress tensor becomes:

o=rT1(e; ey +es@e;) where T = 0
or

0 7 0
o] = T 0 0
0 0 0

The characteristic equation becomes:

AN —=7%) =0
With solutions as the principal stresses:

o, =T, 09 = 0,03 = —7T

And corresponding principal directions:

ny = (e; +e)/vV/2  n2 = e3
ns = (e; — 82)/\@

X, . .
I O, =T Stress state in uniform shear
/
O
a2 o,=T
| < I 12
— x
O
—e, l 21

Principal stresses and their
planes in uniform shear
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Pure Bending
Hydrostatic pressure

Assuming zero body forces, the stress at x, is ( «x and /g
are constants): Here the stress tensor takes the form:
o = a(ry —ho)er ® e; oc=—p@) I o o0y =—plx)dy
or With the equilibrium equations reducing to:

alarg —hg) 0 0

0 0 0
1 Stress state in pure bending l

With the body force zero, a body subjected
to a constant hydrostatic pressure is in
equilibrium since:

—Vp =0
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Plane stress:

It defined when ©,,, 0,,, 0, =0,

may not be zero while the other components
are zero. We have:

O = 01161 ¥ ey + 092€n ¥ €y

+o12(€1 @ eg + ez @ey)
Or
J11 J12 0
[O’} = ada12 ad29 0
0 0 0
The stresses are only functions of x; and X,.
Assuming zero body forces, the equilibrium

equations become:
8511 {i:){j'lg — 0
Oy N Ory
8{721 E:)G'QQ — 0
Jxq Ory

——
(0}
12 o
e 12
] =
Oy,
' X,

Stress components at a point in plane
stress in two coordinate systems

sz 10-22
05

From [0'] = [C][O']:

-

(

c]

Oy, = 21)

v ) 2 -
P (0, =0, sin” 6 +0,, cos” @ —20,, cosfsin b

cosd sind 0'11\. o,, |[cos@ —sind B 01'1\ 01'2
—sin@ cos@ )\ o, o, )\sin@ cosd ) o, O,

' 2 . 2 .
0,,=0,,¢c08 0+0,,sin" 0+20,cosfsinb

o,, =(0,, —0,,)cos@sin @+ g, (cos’ € —sin” O)

Note that a Mohr’s circle for stress analysis is the
geometrical solution/intrepretation of these equations.
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P1OLA-KIRCHHOFF STRESS TENSORS

The Cauchy stress tensor . is expressed with respect
to the current configuration R i.,e. itis the real stress.

Measurements of stresses in the undeformed
configuration have been proposed for the study

of problems in solid mechanics.
The principles of momentum and angular momentum

formul ith h figurtion. '
are formulated with respect to the current configurtion These are the first and second

Problems in solid mechanics require a formulation with Piola-Kirchhoff stress tensors.

respect to the initial configuration RU'

This is because (a) it is difficult to know the deformed
condition of a solid beforehand, (b) it is more convenient
to analyze the experimental response of a solid with
respect to its undeformed configuration.

There is not simply a change of variables in the equations
of motion and the Cauchy stress components using:

x=x(X.,t)
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N
K
Xo, T T
o Here t(x,t,m) isthe Cauchy stress vector acting on the actual
| surface element n ds atx.
RQ n
| : To this vector we associate the vector T'(X,7, N)
Called the first Piola-Kirchhoff stress vector, to the
d‘? corresponding reference surface
X
u element/N dS , and related to t(x.,7.n) as follows:
82 g
T R
T(X.t.N(X))dS =t(x,t.n(x,t))ds
0 .
‘. el/ A 4 .S and s are positive. Thus, T and t have the same direction
The Cauchy stress vector t acting in T but ||7'|| and [[t]| are not generally the same.
and the first T' and second K
X;, 13 Piola-Kirchhoff stress vectors acting inJR || Note that the stress vector is not real (often called pseudo-stress).
Using Cauchy’s relation £;(X,f,n) =0, (x,0)n; T(X,t.N)dS = t(xz,t.n)ds = o(x.t)nds

[I— B r
and Nanson’s formula nds = JF~ T N dS = J(X,t)o(x(X.t).t)F " NdS
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PIOLA-KIRCHHOFF STRESS TENSORS

T(X.,t,N)dS

Htm)do = o fnds T(X,t,N)=P(X,{)N
J(Xft)J(X(X-f)'t)F_TNdS ‘ - ' ‘ /

The First Piola-Kirchhoff stress tensor defined as:

P(X.,t)=J(X t)o(x(X,t),t)F"

Using the symmetry of the Cauchy’s stress tensor g = g’ it is shown below that: PFT — FPT

!

/

P=JocF"' = PF' =Jo
(PFT )T =FPT=J(O')T =Jo ‘ of conservation of angular momentum is

— PF' = FP'

Tensor P is not symmetric and the principle

satisfied when this relation is met.
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Obiectivity of the Tensor o Objectivity of the Tensor P
We consider Cauchy’s relation ,(X,f,n) =0, (x,0)n, To check the objectivity of P we start with
as seen by two observers R and R*. e T . s
P'F =Jc
We assume that vectors ¢ and n are objective and and use
are transformed as:
t =0t ; n =0n F' =QF ; J =J ; P=JoF"

From t* = g*n*wehave Qt = o*Qn

PY(QF)" = JQoQ"

We multiply ¢ =con by Q toobtain:Qt = Qon PFTQT = QJoQT = QPFTQT
Comparing the two last results we have: P = QP.
o =QoQ’ l

The first Piola-Kirchhoff stress tensor
EEE)  the Cauchy’s stress tensor is objective. is not objective.
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K
Xy, 19

ezh

0

dS

€3

The Cauchy stress vector t acting in K.
and the first T’ and second K
Xs, 13 Piola-Kirchhoff stress vectors acting in R[}

97

X, 1

ds

p

Here t(x,t,m) isthe Cauchy stress vector acting on the actual
surface element 1 ds atx.

To this vector we associate the vector called the second
Piola-Kirchhoff stress vector, to the corresponding reference
surface element [N (/.S , and related to t(x,¢,n) as follows:

K(X.t,N)dS=F ' (X.t)t(x(X.t). t, n(X,t)) ds

Here K expresses ’ihe conact force per unit reference surface
transformed by F' ~ : Expressing

K(X.t,N)=S(X.t)N

We can define the second Piola-Kirchhoff tensor S given below:

Using Cauchy’s relation: (X, ?,1) = o (x,t)nj ‘

and Nanson’s formula: nds = JE LN dS

S(X,t)=J(X,H)F Y X, t)o(x(X.t),t)F~1 (X )
— FY(X.t)P(X,t). whichissymmetric
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Linearization of the Stress Tensors

It is important to check what are the effects of the
Kinematic linearization on the three stress tensors.

From the relation:
PFT — FpT

We express the tensor P in index form as:

Pmk — FmE(RJJT(Fj;ﬂ)_T — Fmﬁpjt k-_jl

Similarly the second Piolla-Kirchhoff stress tensor:

S=F'P

takes the form in index notation:

U,
OXy

Sij = F; "Prj = (a“- ) Py = Pij — Py,

For the Cauchy stress tensor we express it using:

P=JoF"'

Ojj = -]_lpz'ﬁc(ij)T = J_le'ijk

as

oU;
OXg

. ) [0 _1 N O
Using: F.. = §,. i, Tl .
J 0ij T a){j ij 013 a;ﬁj
- = — O(c?) ~
and 0X; di +0() 8;1.'3-
oUy, dU oU.,. U,
Pmk:Pkm_ijaX OX; ~ligy, axk-
"y "y Py E) Py ;.'
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Linearization of the Stress Tensors

Tij = J_lpz'k(ij)T = J_lpiijk
ou; ;
0X, .Fw = 045 —
Fij =04 + 0(5) F 't =0;—O(c

O

Using

J=~1 + O(=)
oU ;
_gp (s J
E)U
= J (P P; ~ I P
( J T kd){‘!g) J T k

81'3'

)

oU
OX},

If we neglect the terms with the displacement gradient on
the expressions:

Pmk = Pkm — Pjm g[;{ + i C()){j{ ﬁ’(;{;g g[;fj;
Sij = Fy' Prj = (ﬁik - ggk) P = Fig = g g;k
oij = J ' Py (53':‘9 + ;j%g)
= J Y(P;; + Py 3;,%) Pij + Fix gi'k

!

Pk = Prm Sij = Py 045 = Dij
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